

SUSTAINABLE DEVELOPMENT STRATEGIES FOR T&D

CONFERENCE 2025

EDF – Effective approach of transformers monitoring to improve sustainable fleet management

Luc PAULHIAC (main author/Senior Expert), Léa GODQUIN (Transformer Engineer): Maintenance & Support Dep. Nuclear Gen. Rémi DESQUIENS, Damien BORTOLOTTI: Transformer Experts for EDF R&D Jean SANCHEZ (presenter): Senior Transformer Engineer for EDF General Technical Department

9 April 2025

EDF main generation transformers fleets + context

Hydro fleet ⇒ ≈ 800 power transformers / ≈ 100 monitored

Nuclear fleet ⇒ ≈ 310 power ODAF transformers / ≈ 230 to be monitored (No OLTC)

Surging demand for transformers worldwide: large impact due to ageing fleets renewal, increasing electrification projects (including renewable), labor shortages, supply chains (Covid-19 and others)

- ⇒ Most of the power transformers are custom products with little to no standardization and complex requirements (EU Ecodesign Regulation) + need for specific raw materials quality
- ⇒ Each require extensive studies and testing, and are unique or produced in very small batches
- ⇒ Major equipment manufacturers' order books are full for the next 3 to 7 <u>years (!)</u> and the same is true for accessories such as bushings (at least 1 year between order and delivery)
 - ⇒ Fleet assessment and life extension is more essential than ever in:
 - ⇒ Sustainable & resilient production approaches to best prevent any major failure!

Evolution with a new effective monitoring approach

Offline fleet assessment + Online monitoring systems

Offline fleet assessment (≈ 1,800 transformers):

- ⇒ Inhouse database + tool to automatically assess all periodic oil analysis (+ bushings)
- ⇒ 3 health indexes automatic calculations: health, risk and confidence

Monitoring assessment (≈ 300 transformers to come), and / or:

- ⇒ Thermal (mid to long term evolutions)

 Top oil + ambient temperatures + load + cooling stage (ODAF) = 1 measure / 10 min
- ⇒ Dissolved Gas Analysis (DGA) (short to mid term evolutions)
 9 gases to perform fault identification = 1 measure / day to 1 measure / hour
- \Rightarrow Bushing monitoring (very short to short term evolutions)

 Capacitive currents + partial discharges + relative tan δ = 1 measure / hour

Effective monitoring approach: All about risks & actions

- ⇒ Convert complex data into *risk levels* and *operational actions* without requiring expert knowledge
- **⇒** The expert is in the software **⑤**

Designed to improve:

- Monitoring impact & efficiency
- ➤ Thus ⇒ reliability rate = no (less!) failures
- ➤ Thus ⇒ sustainable fleet management ☺

Thermal monitoring of ODAF transformers (1/2)

Based on extensive internal studies published by EDF (Luc Paulhiac and Rémi Desquiens)

Uses of a "digital twin":

- ⇒ Optimize the cooling stages to minimize ageing
- ⇒ Evaluate in operation thermal margins
- ⇒ Estimate the loss of coolers' efficiency
- ⇒ Condition based maintenance of coolers
- ⇒ Calculate emergency cooling capacity, etc. \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\)

Inputs & outputs:

- ⇒ Basic factory acceptance tests (FAT) data: no-load + load losses + heat run temperature rises.
- ⇒ Operational parameters: top oil and ambient temperatures, load, cooling stages.
- ⇒ Continuous model / measures comparison

Thermal monitoring of ODAF Transformers (2/2)

Constant Oil flow / Fan modulation

Sub exchanger modulation

Hysteresis based regulation

"Digital twin" = Online evaluation of normalized TopOil value (1 pu, 20°C)

Example of poplar cottonwood blocking the finned tubes

Dissolved gas analysis monitoring (1/2)

Based on research by Michel Duval (Cigre TB-771) and Luc Paulhiac

+ Ongoing publication Duval/Paulhiac in IEEE Access and in Cigre 2025-Montréal

Faults & severity: Not all faults are equal!

- \Rightarrow 11 types of faults
- ⇒ Main fault determined with a pentagon
- ⇒ Secondary fault determined with triangles (1/4/5)
- ⇒ **Severity** depends on the
 - ⇒ Fault **type** (dielectric / thermal)
 - **Location** of the fault (paper / oil)

Fault Severity

the

gassing

are in S

zones

Fault	Severity	
Type	Scale	
S		
PD	Low	
0-T1		
T3-H		
D1-H	Moderate	
C-T1	High	
C-T2		
C-T3		
D2-H		
D1-P	Very High	
D2-P		

EDF-data cluster (34,000 DGA) Unified Most of

Risk Scale for the Equipment

paper carbonization

Dissolved gas analysis monitoring (2/2)

			Their sould for the Equip		1110111		
			Dominant Gas Level	Dominant Gas Level	Dominant Gas Level		
		=	=	=			
			Low to Typical	Typical to PF	Pre-Failure State		
Sub Fault Type	Sub Fault Severity Scale	Associated Dominant Gas	NO FAULT & Little to No gassing Activity If Dominant Gas CONS OR ROC < 90%	FAULT & Gassing Activity If Dominant Gas 90% CONS OR ROC < PF	FAULT & Severe Gassing Activity If Dominant Gas CONC OR ROC > PF		
S		H ₂ or C ₂ H ₆					
PD		H ₂		Laurta Madavata	Himb		
0-T1	Low	C ₂ H ₆	Low	Low to Moderate	High		
Т3-Н		C ₂ H ₄					
D1-H	Moderate	C ₂ H ₂	Low to Moderate	Moderate to high	Very High		
C-T1		CH	Moderate to high	High			
C-T2	High	CH₄ or C₂H₄			Very High +		
C-T3		OI C2H4					
D2-H							
D1-P	Very High	C ₂ H ₂	Lliah	Von High	Vone High ++		
D2-P			High	Very High	Very High ++		

Challenges:

- ⇒ Detect gassing evolutions = adaptation of the new method to online monitoring
- ⇒ Analyze relative signature
- ⇒ Adapt sampling frequency
- ⇒ Some faults evolve very fast, etc.

	Risk and Proposed Action						
	Risk Scale		Action				
Lo	w	1.0					
	ow to derate	1.5	Normal business				
Mc	oderate	2.0]				
Mo hig	oderate to	2.5	Increase sampling frequency (always use remote oil sampling ports). Examine faults more in depth.				
Hig		3.0					
Hiq Hig	gh to Very gh	3.5	For thermal and especially "C" faults perform load variations to evaluate the effect on the gas production.				
Ve	ry High	4.0	Iostall an online gas analyzer				
Ve	ery High +	4.5	Examine faults more in depth. Ask for an expert (and/or the vendor)				
Ve	ery High ++	5.0	have a second look. Consider removing the transformer from operation (for further investigations) especially if the signature is rapidly moving toward faults associated to high or very high severity.				

e

Bushing monitoring (1/2)

Bushings are a major SPV (single point of vulnerability):

- ⇒ 25 % of transformers failures
- ⇒ More than 50 % of the fire cases

- ⇒ Leakage currents (C1) ⇒ missing layers
- \Rightarrow Relative tan δ (without voltage references)
- ⇒ Partial discharges

CIGRE TB#939 AC Transformer Reliability See Also TB#755 Bushing Reliability

Oil/SF6 RIP High Voltage Bushings on GIS
Field Cases of Tests Onsite and Investigations

Jean SANCHEZ

PEDIF Division Technique Generale (DTG), France*
E-mail: jean sanchez@edf.fr

CIGRE 2023, Split (Croatia)

Bushing monitoring (2/2)

EDF has developed its own robust algorithms based on raw currents:

- ⇒ **Setting alarm thresholds** (neither too high nor too low) with commercial systems **is not easy**.
- ⇒ Given the lack of general theory regarding degradation kinetics, it is essential to detect early stages of degradation
 (1 layer in short-circuit) and to create robust detection means (without a false positive).
- ⇒ On a 400 kV HV bushing one missing layer corresponds to a sudden increase in leakage current of 2 % (0,7 mA over 30-32 mA).
- ⇒ Commercial software packages cannot reach this goal.
- ⇒ **Results**: already 2 online interceptions ⇒ removed from service.

Conclusion

- ⇒ Power transformers are the most critical assets in a switchyard.
 - Effective monitoring must address the primary sources of degradation and the associated risks.
- ⇒ **Thermal degradation** has long-term effects and can significantly reduce the transformer's lifespan if not detected and addressed.
- ⇒ **Dissolved gas analysis** (DGA) and **bushing monitoring**:
 - Early detection through both offline and online measurements is crucial.
 - There is no established theory to describe the degradation kinetics of bushings or the active parts of a transformer. Degradation processes can take months or just a few hours.
- ⇒ Failures pose significant risks to personnel and can result in substantial financial losses.
 - Given the current supply crisis, failure is not an option!
- ⇒ Pressing need for software that can **convert complex data into risk evaluation**, and **appropriate operational actions** to make monitoring fully effective.
- ⇒ With no effective methods in current IEC/IEEE standards, EDF has developed its own algorithms ©

Thank you for your kind attention

Questions?

